If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9x^2+149x+590=0
a = 9; b = 149; c = +590;
Δ = b2-4ac
Δ = 1492-4·9·590
Δ = 961
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{961}=31$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(149)-31}{2*9}=\frac{-180}{18} =-10 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(149)+31}{2*9}=\frac{-118}{18} =-6+5/9 $
| 4a/4=4 | | -3.2x-3.1=5.4x+5.5 | | 7y+3+3y+9=14y-8 | | (x+44)+(3x)=90 | | 4m*4=0 | | 2x^2+6x-7912=0 | | 3(x+5)+3=18 | | -3u+12=-7u+8 | | (x+33)+(2x)=90 | | (x+33)+x=90 | | 2y2-24y+64=0 | | 3.14*16h=218 | | x^2+(x+3)^2-89=0 | | -7=8(x) | | 2x2+9x+14=0 | | x^2+(x+3)^2=89 | | -7(4x-7)=-28x+49 | | -3(1-p)-6p=-6(P+1) | | 5-3(x+5)=5x-18 | | -9(u+9)=7u-33 | | 9y-18=2(y-2) | | 9n^2-9n-176=0 | | -6(u+1)=-3u-36 | | 9n^2-9n+176=0 | | 3x2+4=16 | | 1.6x-17.5-72= | | -3(1-p)-6p=(P+1) | | -4(x-2)=37 | | 3x2+4=14 | | -22=7(w-6)-5w | | 5v+30+2v=-12 | | 9x-1/x+5=4 |